Computational Structural Methods for Ligand (Drug) Discovery

Trent E Balius Frederick National Laboratory for Cancer Research NCI RAS Initiative

Guest lecture for MSB 530 Bioinformatics

2019/08/13

The hook: Why you should care

- Drugs impact human heath and quality of life!
- Drug discovery is a long and expensive process.
- Almost all recent drugs have been touch by computational methods: molecular graphics, molecular docking, free energy calculations ...

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Molecular Recognition

- Understanding the binding event -- important for drug discovery
- Structure-based, Targeted drug discovery
- Computational methods

Important molecular forces for ligand binding

- Electrostatics
- Van der Waals
- Hydrogen bond
- Dipolar interactions
- Quadrupole interactions
- Interactions with water (solvent)
 - Hydrophobic effect
- Entropy

Hydrogen bond

Pi-stacking

By Emily ricq - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17057524

Molecular Recognition

Critical role of water in receptor-ligand binding

Thermodynamic cycle of the binding event

$$\Delta \Delta G_{bind} = \Delta G_{Gas} + \Delta G_{desolv}$$

Water displacement and medicated interactions

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Molecular Models

- Quantum Mechanics
 - physical, but expensive
 - Schrödinger equation: $H \Psi = E \Psi$
 - wave functions defines electron density
- Molecular Mechanics
 - less physical --> empirical parameterization
 - cheap and accurate

Molecular Mechanics Force Field

Molecular Mechanics

- Every atom is a sphere with a radius (Lennard Jones)
- Point charge is located at each atomic center (Coulomb's law)
- Bonds and angles are held by springs to ideal lengths
 - e.g. $V_{bond} = k_b (r r_0)^2$
 - Hooke's Law, K_b: spring constant, r₀: ideal length
- Dihedrals are represented by sigmoidal function which has energy wells at favorable angles.
- Improper torsions force atoms to be a defined angle to plane.

The "Tinker-toy Model"

Dihedral Term is a Sigmodal Function

$$V_{dihidral} = K_{\chi} (1 + \cos(n\chi - \delta))$$

p(3.14) radians = 180 degrees

Molecular Modelling Principles and applications, Leach Pearson Prentice hall second edition (chapter 4)

Lennard-Jones Equation

Molecular Modelling Principles and applications, Leach Pearson Prentice hall second edition (chapter 4)

Potential Energy Function

$$\begin{split} V &= \sum_{bonds} k_b (b - b_0)^2 + \sum_{angles} k_\theta (\theta - \theta_0)^2 + \sum_{impropers} k_\varphi (\varphi - \varphi_0)^2 \\ &+ \sum_{dihedrals} K_\chi (1 + \cos(n\chi - \delta)) + \sum_{i=1}^N \sum_{j=i+1}^N \varepsilon_{i,j} \left[\left(\frac{R\min_{i,j}}{r_{i,j}} \right)^{12} - 2 \left(\frac{R\min_{i,j}}{r_{i,j}} \right)^6 \right] + \frac{q_i q_j}{\varepsilon r_{ij}} \end{split}$$

Different Force-Field

- CHARMM
- AMBER
- GROMOS
- OPLS

Parameterization

- Experimental observables
- Quantum Mechanical calculations

Interdependences among parameters

Molecular Modelling Principles and applications, Leach Pearson Prentice hall second edition (chapter 4) *Mackerell, Vol. 25, No. 13, Journal of Computational Chemistry*

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Molecular Dynamics

Molecular Dynamics

• Newton Equations

$$E(X_{\text{position}})$$

$$F = -\nabla E$$

$$X_{\text{position}}^{\text{new}} = \iint \frac{F}{m} \partial t^{2}$$

- Differential Eq. (velocity verlet algorithm)
 - propagate to get motion
- Energy functions:

$$E = E_{bonded} + E_{steric} + E_{elect}$$
$$E_{bonded} = E_{bond} + E_{angle} + E_{dihedra}$$

2 fs time step

Simulate Binding of Ligand to Protein

4-µs simulation of dasatinib binding to Src kinase;

Binding occurs 2.5 µs into the simulation (in the 7th second of the movie)

2 fs = 1 time step

- $1s = 1,000,000 \ \mu s$
- $4 \mu s = 2$ billon time steps

Shan, Y; et al. J. Am. Chem. Soc. 2011, 133, 24, 9181-9183

Some Applications for Modular Dynamics

Figure 1. Four biomolecular processes that are governed by thermodynamic equilibria.

Angew. Chem. Int. Ed. 2006, 45, 4064 – 4092

Things to Consider for Molecular Simulations

Figure 2. Four basic choices in the definition of a model for molecular simulation.

Angew. Chem. Int. Ed. 2006, 45, 4064 - 4092

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Docking is ligand discovery tool

Docking Tasks

- Sampling
- Scoring
- Balance of speed and accuracy

Enrichment for positives through docking

J. Med. Chem., 2006, 49 (23), pp 6789-6801

Fully Grown Conformers

0

Branch (conformer)

5 internal Degrees of Freedom

Six degrees for freedom

How Sampling works (orientational)

A toy example illustrating the matching sphere orientational matching algorithm

Coleman, RG et al. PLoS One. 2013; 8(10): e75992.

How DOCK 3.7 works

Preparation, Sampling, and Scoring

How to evaluate docking methods

- Pose reproduction, reproduce the crystallographic poses
- Enrichment calculations, make sure ligand found in the top of the rank orders lists.
- Prospective testing on model cavities, make a predication, and test it!

Pose Reproduction: RMSD Calculations

We can correct for molecular symmetry using the Hungarian algorithm

It is important that we are obtaining the correct binding mode. Right for the right reasons
Enrichment Background

J. Med. Chem., 2006, 49 (23), pp 6789-6801

Retrospective testing Enrich knowns over Decoys

Computational Prediction vs. Experimental Evidenced

	activity	inactivity
predicted	True Positive	False Positive
activity	(selected actives)	(selected decoys)
predicted	False Negative	True Negative
inactivity	(removed actives)	(removed decoys)

39

Computational Prediction vs. Experimental Evidenced

		activity	inactivity
Dock Score	predicted activity	True Positive (selected actives)	False Positive (selected decoys)
	predicted inactivity	False Negative (removed actives)	True Negative (removed decoys)

Computational Prediction vs. Experimental Evidenced

		wet lab ex	wet lab experiment	
		activity	inactivity	
Dock Score	predicted activity	True Positive (selected actives)	False Positive (selected decoys)	
	predicted inactivity	False Negative (removed actives)	True Negative (removed decoys)	

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Large-scale docking: Screen all of purchasable space

Irwin's law: Docking libraries, crucial for chemical discovery, doubling every 2.5 years

John Irwin

Large scale docking flow

AmpC β-lactamase

We docked <u>100M</u> molecules to **AmpC** β -lactamase

We bought new chemotypes

Isha Singh & Jiankun Lyu

Crystal structure confirms docked pose and phenolate

D4 Dopamine receptor

Bought 444 molecules to estimate the DOCKing hit rate curve for DRD4

444 molecules were picked automatically, with 35 to 40 molecules sampled at 12 energy windows from docking scores from -75 to -35 kcal/mol.

Great hit rate of 25% at top, poor hit rate of 0% on right

Great hit rate of 25% at top, poor hit rate of 0% on right

Among the 138 million molecule library there are calculated to be over 481,000 D4 active molecules

hit-rates fell almost monotonically with score

The 95% confidence: [209K,1,020K]

Matthew O'Meara

180 pM Gi-biased, selective, full agonist, among the most potent sub-type selective agonists known for this receptor

 $\label{eq:constraint} \begin{array}{l} ZINC621433144 \\ K_{i,DRD4} = 4.32 \ nM \\ K_{i,DRD2} > 10,000 \ nM \\ K_{i,DRD3} > 10,000 \ nM \\ cAMP \ EC_{50} = 0.18 \ nM \\ Tango \ EC_{50} = 57.3 \ nM \\ G_i \ BRET \ EC_{50} = 0.56 \ nM \\ Arrestin \ BRET \ EC_{50} = 2.3 \ nM \\ Bias \ factor = 17 \ to \ G \ protein \end{array}$

Tao Che, Bryan Roth

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

T4 lysozyme L99A

How does T4-lysozyme bind a congeneric ligand series

Merski, Fischer, Balius et al 2015 PNAS 112(16):5039-44 Morton, et al. 1995 Biochemistry 34(27):8564–8575 Morton & Matthews 1995 Biochemistry 34(27):8576–8588

T4 lysozyme L99A opens

Probing receptor conformational change induce by ligand series

Is this response of the receptor to ligand size discreet or continuous?

Merski, Fischer, Balius, et al 2015 PNAS 112(16):5039-44

Binding affinity is less than hydrophobic burial

Merski, Fischer, Balius, et al 2015 PNAS 112(16):5039-44

Outline

- The binding event using a thermodynamic cycle
- Introduction to molecular mechanics
- Introduction to molecular dynamics
- Introduction to molecular docking
- Applications from my work
 - Large-scale docking
 - Receptor flexibility
 - Receptor desolvation

Adding a Term to the Scoring Function

Meng, et al J. Comput. Chem. 1992, 13, 505–524 Mysinger and Shoichet J Chem Inf Model. 2010, 50(9):1561-73

Calculating Water Energetics with Receptor

T. Lazaridis, J. Phys. Chem. B, 1998, 102, 3531-3541. T. Lazaridis, J. Phys. Chem. B, 1998, 102, 3542-3550 C.N. Nguyen, et al, J. Chem. Phys. 2012, 137, 044101

Combining GIST Grids

Testing DOCK+GIST Using a Model Cavity

- Model systems are simple engineered cavities
- They are dominated by 1-2 interaction terms, allowing us to disentangle various energetic contributions in docking

Cytochrome c peroxidase gateless mutant:

- Mutations/deletions result in solvent-exposed binding site (~8 water molecules)
- Alternative loop conformations (residues 186-194)
- Contains one anionic residue (Asp233)
- Almost exclusively binds small monocations
- Straightforward binding assay and crystallography

Prospective Screens

We make a computational prediction and test it experimentally
Selecting Molecules to Test with Differences

- We screened up to 1.8 million fragment molecules to the CcP-gateless mutant
 - Preformed 2 screens: Non-GIST and GIST
 - We are interested in differences
 non-GIST
 Gist
 333
 667
 333
 1333
- Comparing GIST to standard screening, molecules were chosen based on:

• 17 compounds (14 pro-GIST and 3 anti-GIST) have been bought and tested

We Tested 17 Molecules

14 pro-GIST, 3 anti-GIST

Experimental Assay to Detect Binding

We determined Affinities for 12 molecules

Affinities range from $1\mu M$ to 3.5mM

9 Crystal Structures for Pose Comparisons

77

Prospective Summary

Extra slides.

CMP 2: Binder, GIST Pose is Right

name	GIST	nonGIST	logrankdiff	rmsd
ZINC000006557114	664	740	0.047	4.62

CMP 3: Water-Mediated, Weak Binder

name	GIST	nonGIST	logrankdiff	rmsd
ZINC000004705523	13	249	1.28	0

CMP 9: binder, wrong pose

name	GIST	nonGIST	logrankdiff	rmsd
ZINC000020357620	98	745	0.88093	0

82

CMP 11: best binder

83

GIST has little effect on retrospective analysis of 25 DUDE systems

DOCK: A History

Rizzo Group

Docking is Important in Ligand Discovery

Applications of docking

- Virtual Screening: given a protein and database of molecules find those that bind.
- Pose prediction: given a molecule and a protein predict how that they bind

Docking Tasks

- Sampling
 - generate all the possibilities including finding the correct geometry
- Scoring
 - of all the possibilities, rank the correct pose first
 - also, rank the binders better than decoys
- Balance of speed and accuracy, docking has to be fast.

How to evaluate docking methods

- Pose reproduction, reproduce the crystallographic poses
- Enrichment calculations, make sure ligand found in the top of the rank orders lists.
- Prospective testing on model cavities, make a predication, and test it!

$$E = \sum_{i \in L} \left(\sqrt{A_{i,i}} \sum_{j \in R} \frac{\sqrt{A_{j,j}}}{r_{i,j}^{a}} - \sqrt{B_{i,i}} \sum_{j \in R} \frac{\sqrt{B_{j,j}}}{r_{i,j}^{b}} + 332q_{i} \sum_{j \in R} \frac{q_{j}}{Dr_{i,j}} \right)$$

http://dock.compbio.ucsf.edu/DOCK_6/dock6_m anual.htm#Grid

$$E \approx \sum_{i \in L} \left(\sqrt{A_{i,i}} \operatorname{interp}[G_{av}(p_1), \cdots, G_{av}(p_8)] \right) \\ + 332q_i \operatorname{interp}[G_{es}(p_1), \cdots, G_{es}(p_8)]$$

Interpolation

Trilinear: for a cube, perform 7 linear interpolations: 4 to calculate red (from the cyan); 2 to calculate green (from red); and 1 to calculate the atomic approximation (from green)

http://en.wikipedia.org/wiki/Trilinear_interpolation

ROC curves

$$TP_{Rate} = Se_{subset} = \frac{ligands_{selected}}{ligands_{total}}$$

$$FP_{Rate} = (1 - Sp)_{\text{subset}} = \frac{decoys_{\text{selected}}}{decoys_{\text{total}}}$$

Se - Sensitivity, Sp - Specificity

Example ROC Curves

