Enrichments and Rescoring

Trent Balius AMS 535 / CHE 535

Enrichments and Rescoring

Trent Balius AMS 535 / CHE 535

Directory of Useful Decoys

Benchmarking Sets for Molecular Docking

Niu Huang, Brian K. Shoichet, and John J. Irwin

Outline

- Introduction
 - Docking Introduction
 - Docking Validations
 - Enrichment
- DUD Background
- DUD Enrichments
- DUD Cross-Enrichments
- Binding pose predictions
- Conclusions

Introduction

Docking Introduction

- Objectives of Docking programs
 - generate binding modes (or poses)
 - select the true pose out all poses generated with a scoring function
- Uses of Docking programs
 - pose reproduction
 - (pdb of receptor but not of complex)
 - virtual screening
 - find a new drug lead by screening virtual databank (e.g. ZINC)

Docking Validations Studies

- Pose reproduction:
 - regenerating the known binding mode of a ligand in the context of the protein with a docking program
 - protein-ligand complex needed
- Enrichments:
 - after docking a database of known actives and decoys the actives are top scoring
 - protein structure needed

Enrichment

Enrichment Studies

unknowns may have activity

Enrichment Studies

- Active and inactive is not known
 - Why not run an assay on all the small molecules?
 - expensive
 - takes time
 - multiple levels of experiments (needs to compare several assays. e.g. HTPS)
 - Seed the population with known active compounds
 - See how many bubble to the top.
- Enrichment curves
- Receiver operating characteristic (ROC) curves

DUD Background

Overview of DUD

- Directory of Useful Decoys (DUD)
 - used for enrichment studies
 - # of systems = 40 targets (proteins)
 - # of ligands = 2,950 molecules (actives)
 - # of decoys = 98,266 (presumed non-binders)
 - every active molecule has 36 decoys
 - 36*2950 = 106,200 ≠ 98,266 because there are some decoys shared among ligands.
 - decoys are physically similar
 - topologically distinct

Overview of DUD (cont'd)

- Directory of Useful Decoys (DUD)
 - Systems chosen for the following reasons: availability of annotated ligands crystal structures previous docking studies
 - Designed to remove sorting bias on "gross features"
 - Decoys are "chemically distinct" from active ligand "unlikely binders"

Protocol for DUD prep

Annotated ligands +	ZINC (~ 3.5 million compounds)
	2D dissimilarity analysis
Annotated ligands	+ 1.5 million of ZINC compounds (Tc < 0.9* against any known ligands)
	1D similarity analysis (MW, HBacc, HBdon, LogP and RB)
Annotated ligands +	DUD decoys (36 decoys per ligand)

Tanimoto Coefficient $Tc = \frac{|A \cap B|}{|A \cup B|}$

- intersection is # of ON bits common in both A and B
- union is # of ON bits present in either A or B
- Examples of Daylight Fingerprint descriptors:
 - ring systems
 - common functional groups
 - which elements are present
 - unusual electronic configurations.

DUD systems

Table 1. Enrichments of the Annotated Ligands Using the Decoys in DUD for Forty Targets by Docking^a

	ano to in	PDB	resolution	no. of $\lim_{k \to \infty} da^k$	no. of	ББ	ББ	ББ
	protein	code	(A)	ligands	decoys	EFmax	\mathbf{EF}_1	\mathbf{EF}_{20}
			Nuclear I	Hormone Rec	ceptors			
1.	AR	1xq2	1.9	74 (a,b)	2630	60.2	33.5	3.8
2.	ER _{agonist}	112i	1.9	67 (a–c)	2361	29.6	19.2	4.5
**3.	ER antagonist	3ert	1.9	39 (a-d)	1399	101.6	12.7	1.3
4.	GR	1m2z	2.5	78 (a)	2804	31.7	8.9	1.4
5.	MR	2aa2	1.9	15 (a)	535	330.0	46.2	3.7
6.	PPARg	1fm9	2.1	81 (a)	2910	1.0	0.0	0.0
7.	PR	1sr7	1.9	27 (a)	967	2.9	0.0	2.0
8.	RXRa	1mvc	1.9	20 (a)	708	148.5	24.8	2.2
				Kinases				
9.	CDK2	1ckp	2.1	50 (e,f)	1780	19.8	13.9	1.4
10.	EGFr	1m17	2.6	416 (g)	14914	3.8	2.1	2.4
11.	FGFr1	1agw	2.4	118 (g)	4216	1.0	0.0	0.2
12.	HSP90	1uy6	1.9	24 (h)	861	10.8	8.6	2.0
**13.	P38 MAP	1kv2	2.8	234 (g)	8399	4.1	2.1	2.4
14.	PDGFrb	model	n/a	157 (g)	5625	1.2	0.0	0.6
15.	SRC	2src	1.5	162 (g)	5801	3.1	1.2	1.5
**16.	ТК	1kim	2.1	22 (a,d,i)	785	63.0	54.0	5.0
17.	VEGFr2	1vr2	2.4	74 (j)	2647	2.2	1.3	1.4
			Sei	rine Proteases	3			
18.	FXa	1f0r	2.7	142 (e,f,k)	5102	34.9	14.6	3.8
19.	thrombin	1ba8	1.8	65 (e,l,m)	2294	18.3	13.7	2.9
20.	trypsin	1bju	1.8	43 (e,l)	1545	22.5	22.5	2.6

DUD systems (cont'd)

		protein	PDB code	resolution (Å)	no. of ligands ^b	no. of decoys	EF _{max}	EF_1	EF ₂₀
				Ме	talloenzymes				
	21.	ACE	1086 1stw	2.0	49 (a,m) 23 (a a)	1728	141.4 21 5	40.4	3.7
	22.	COMT	15tw 1h1d	2.0	23(a,c) 12 (a)	430	21.5 11.8	12.9	2. 4 3 3
	23. 24.	PDE5	1xp0	1.8	51 (f)	1810	29.1	11.8	2.3
				Fo	late Enzymes				
	25.	DHFR	3dfr	1.7	201 (m)	7150	28.7	21.7	3.5
	26.	GART	1c2t	2.1	21 (n)	753	70.7	42.4	3.3
				Ot	her Enzymes				
	27.	AChE	1eve	2.5	105 (a,e,m)	3732	3.1	1.9	2.0
	**28.	ALR2	1ah3	2.3	26 (o)	920	76.2	38.1	2.3
	29.	AmpC	1xgj	2.0	21 (p)	734	23.6	17.1	4.7
1Q4G →	30.	COX-1	1p4g	2.1	25 (i)	850	9.9	4.0	1.6
	31.	COX-2	1cx2	3.0	349 (c,f,m)	12491	29.1	20.1	3.3
	32.	GPB	1a8i	1.8	52 (e,m)	1851	28.6	22.8	4.1
	33.	HIVPR	1hpx	2.0	53 (a,e)	1888	9.3	3.7	2.2
	34.	HIVRT	1rt1	2.6	40 (q)	1439	49.5	5.0	3.0
	35.	HMGR	1hw8	2.1	35 (a,i)	1242	198.0	33.9	2.1
	**36.	InhA	1p44	2.7	85 (r)	3043	1.0	0.0	0.3
	37.	NA	1a4g	2.2	49 (c,e,i)	1745	60.6	20.2	3.3
	38.	PARP	lefy	2.2	33 (s)	1178	6.3	6.0	3.6
	39.	PNP	1b8o	1.5	25 (e,t)	884	158.4	31.7	4.4
	40.	SAHH	1a7a	2.8	33 (i)	1159	120.0	78.0	5.0

Six DUD systems

protein	PDB	resolution	no. of	no. of	EFmax	EF1	EF20
	code	(Å)	ligands	decoys			
ERantagonist	3ert	1.9	39	1399	101.6	12.7	1.3
P38 MAP	1kv2	2.8	234	8399	4.1	2.1	2.4
ТК	1kim	2.1	22	785	63.0	54.0	5.0
ADA	1stw	2.0	23	822	21.5	12.9	2.4
ALR2	1ah3	2.3	26	920	76.2	38.1	2.3
InhA	1p44	2.7	85	3043	1.0	0.0	0.3

- Families chosen for the following reasons:
 - ER and TK -- strong ligand enrichment and substantial number of published docking studies
 - P38 MAP kinase -- poorly performing protein kinases
 - ADA -- failed with the fully automated docking engine and rescued by the semiautomated procedure
 - ALR2 -- intermediate enrichment.
 - InhA -- failure of the docking method

Molecule Properties

The physical property distributions

- brown -- annotated ligands (2950 compounds)
- blue -- the DUD decoys
 (95 316 compounds)
- green -- properties of the MDDR database
 - (98 000 compounds)
- orange -- Jain's decoys
 (randomly selected 1000
 ZINC druglike compounds)
- cyan -- Rognan's decoys
 (randomly selected 990
 ACD compounds).

- The physical property
 - # of HB acceptors
 - # of HB donors
 - xlogp
 - Molecular Weight
 - #of rotatable bonds

supporting material J. Med. Chem. **2006,** *49,* 6789-6801

Automated Docking Pipeline

red - sphere generation, green - scoring grids computation and scoring purple - crystallographic ligand

supporting material J. Med. Chem. **2006**, 49, 6789-6801

DUD Enrichments

Enrichment Factors

$$EF_{\text{subset}} = \frac{ligands_{\text{selected}}/N_{\text{subset}}}{ligands_{\text{total}}/N_{\text{total}}}$$
$$= \frac{ligands_{\text{selected}}}{ligands_{\text{total}}} \frac{N_{\text{total}}}{N_{\text{subset}}}$$
$$= \frac{ligands_{\text{selected,top1\%database}}}{ligands_{\text{total}}} * \frac{100}{1} EF_{20} = \frac{ligands_{\text{selected,top20\%database}}}{ligands_{\text{total}}} * \frac{100}{20}$$

 EF_1

The docking ranked database

the percentage of known ligands found

six representative systems are highlighted in light yellow.

gray -- random

blue DUD database (98 266 compounds)

red target subset decoy

ROC curves

$$TP_{Rate} = Se_{subset} = \frac{ligands_{selected}}{ligands_{total}}$$

$$FP_{Rate} = (1 - Sp)_{\text{subset}} = \frac{decoys_{\text{selected}}}{decoys_{\text{total}}}$$

Se - Sensitivity, Sp - Specificity

Computational Prediction vs. Experimental Evidenced

ROC curves

• ROC -- Receiver Operating Characteristic

http://www.anaesthetist.com/mnm/stats/roc/Findex.htm

DUD Cross-Enrichments

"Cognate" Enrichment Study

Cross-Enrichments

Cross-Enrichments

Matrix of Cross-Enrichments

Very good (black): ETmax \ge 30 and ET20 \ge 3

good (red): 30 > ETmax ≥ 20 and 3 > ET20 ≥ 2.5

medium (green): $20 > ETmax \ge 10$ and $2.5 > ET20 \ge 2$

poor (white): ETmax < 10 and ET20 < 2

boxes are drawn around related targets.

Cross-Enrichments

Matrix of Cross-Enrichments

Very good (black): ETmax \ge 30 and ET20 \ge 3

good (red): 30 > ETmax ≥ 20 and 3 > ET20 ≥ 2.5

medium (green): $20 > ETmax \ge 10$ and $2.5 > ET20 \ge 2$

poor (white): ETmax < 10 and ET20 < 2

boxes are drawn around related targets.

Statistics and Timings

receptor	unique molecules scored ^a	total molecules scored ^b	orientations sampled per molecule	conformations sampled per molecule	total configurations scored ^b	total time (h) ^c
ER	97 427	416 990	1 895	6 543	2.69×10^{10}	54.4
P38 MAP	93 887	294 917	592	7 875	8.97×10^{9}	20.1
ТК	37 240	180 451	3 437	4 302	2.67×10^{9}	21.9
ADE	85 053	297 400	14 632	5 308	2.19×10^{10}	65.5
ALR2	98 724	430 313	4 272	10 109	1.44×10^{11}	296.4
InhA	97 668	429 579	2 325	6 809	5.87×10^{10}	123.5

Table 3. Docking Statistics on Six Representative Targets

^{*a*} Only orientations and configurations passing the steric filter were scored. ^{*b*} Some molecules were represented in the database in multiple rigid fragment, protonation, and tautomeric forms. ^{*c*} Scaled to reflect time on a 2800-MHz Pentium IV.

Binding pose predictions

5A. ER

5B. TK

5C. P38 MAP

5D. ADA

5F. InhA

- six representative targets
- docked ligands (green)
- crystallographic structures (colored by atom type)
- Key hydrogen bonds (yellow)

Conclusions

- DUD is designed to match physical properties of active ligands
- Other databases used in enrichment studies are more physically dissimilar from the actives
- DUD gives poorer enrichment over other databases
 - better to gauge a docking program's abilities
- Most systems have no cross-enrichment with notable exceptions including TK

Rescores

http://dud.docking.org/ DUD Release 2: http://dud.docking.org/r2/

Notes accompanying release 2 as found on http://dud.docking.org/r2/

"Why is the ratio of decoys to annotated ligands described as 36 to 1 in the paper, yet there are on average only 33 to 1 in DUD? This is due to overlap, as the same decoy could be used for multiple targets, particularly in the kinase class where there was so much overlap.

Two DUD decoy compounds (ZINC154632 for RXR decoys and ZINC608655 for ER decoys) were structurally identical/similar to the crystal ligands of RXR and ER, individually. This problem was caused by failing to include the crystallographic ligands in our annotated ligands set, and will be fixed in the next version of DUD. Thanks to Paul Hawkins of OpenEye for bringing this to our attention.

Also: PDB code for COX-1 structure in given as 1P4G but should be 1Q4G. We regret this error, and thank alert reader Paul Hawkins of OpenEye for this information Also, Hao Li of UCSF Pharm Chem points out that the PDB id of ADA in the paper is wrong. It should be 1ndw."

SIFp

Structural Interaction Fingerprint (SIFt): A Novel Method for Analyzing Three-Dimensional Protein-Ligand Binding Interactions

Zhan Deng, Claudio Chuaqui, and Juswinder Singh

SIFt Introduction

- Structural Interaction Fingerprints (SIFt)
- Identification of Ligand Binding Site Residues
 - non-hydrogen protein atoms solvent accessibility loss upon ligand binding
 - protein atoms h-bonding with the ligands
- Extraction and Classification of Binding Interactions

SIFt Introduction

- Seven different types of interactions
 - (1) residue is in contact with the ligand
 - (2) backbone is in contact
 - (3) sidechain is in contact
 - (4) polar interaction
 - (5) non-polar interaction
 - (6) h-bond acceptor
 - (7) h-bond donor
- Concatenating all figure prints together

SIFt Introduction

- Three applications of SIFt in Drug Discovery :
 - sorting, clustering, and organizing docking poses (identifying like binding poses)
 - organizing and clustering 90 crystal complexes
 - filtering virtual screening results to find ligands with certain binding mode and interaction patterns

Tanimoto Coefficient

$$Tc = \frac{|A \cap B|}{|A \cup B|}$$

- intersection is # of ON bits common in both A and B
- union is # of ON bits present in either A or B

Docking studies

- Study #1 (single ligand)
 - ligand SB203580 docked to p38 (pdb code 1a9u)
 - poses generated with FlexX in Sybyl
 - 100 poses generated
- Study #2 (enrichment study)
 - 16 known p38 inhibitors
 - 1000 with diverse chemical structures
 - docked database to p38 (pdb code 1a9u)
 - 30 480 (30 1016) poses generated

SB203580 Clusters in P38

Figure shows the 100 poses generated in Docking study #1, SB203580 docked to p38 J. Med. Chem. 2004, 47, 337-344

SB203580 Clusters in P38

a

h

SIFt Clusters

 Scores are not able to identify the binding mode (SIFt)

b

Database Enrichment Using PMF_Score and SIFt

Enrichment

- comparison of SIFt with 2 alternative scoring functions
- SIFt gives good enrichment

Table 1.	Comparison	of the Database	Enrichment
Performar	ices of SIFt	with ChemScore	and PMF Score

filtering method	EF ^a
PMF Score ChemScore SIFt	2.0 5.4 37.0
SIFt + ChemScore	42.3

Crystal Structure study

- Study #3 (Kinase family analysis)
 - 89 kinase-ligand complexes
 - inhibitor or substrate in ATP binding cleft
 - all active site residues are present in structure
 - 25 different kinases
 - 14 different protein kinase subfamilies
 - 54 unique compounds

Conclusions

- SIFt is a powerful tool
 - pose clustering
 - family clustering
 - filtering screening results
- possible improvements
 - incorporate more types of interactions in the fingerprint
 - uses only subset of residues
 - uses scaled numeric data representing interactions