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EGFR Background
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Cancer Background
• leading cause of death in US under the age of 85 

• 2nd highest cause of death in US

• lung & bronchial cancer is leading cause of death of cancer

• non-small cell lung cancer (NSCLC) largest subset of lung cancer

• EGFR is a target for NSCLC 

• member of the ErbB family: EGFR, ErbB2, ErbB3, & ErbB4

Jemal, A., et al. (2008) Cancer statistics, 2008, CA Cancer J Clin 58, 71-96.

Hynes, N. E., and Lane, H. A. (2005) ERBB receptors and cancer: the complexity 
of targeted inhibitors, Nat Rev Cancer 5, 341-354.
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• two classes of anticancer agents
– monoclonal antibodies (extracellular)
– small molecule inhibitors (intracellular)

EGFR: A Chemotherapeutic Target
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• ligand-free EGFR is a monomer

• EGFR is inactive as a monomer

• EGF binds, the EGFR homo- or hetero 
dimerizes

• EGFR is active as a dimer

• ATP binds Tyrosine Kinase Domain (TKD)
– EGFR auto-phosphorylates C-tail

• leads to signal transduction 
– pathways involved in cellular proliferation 

EGFR Pathway
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Key EGFR
Mutations 

• Cancer Causing
– L858R 

increase binding to 
erlotinib & gefitinib

– Del E746-A750
increase binding to 
erlotinib & gefitinib

– G719S
decrease binding to 
gefitinib 

• Drug Resistance 
– T790M

decrease binding to all 
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aFold Resistance (FR) = ratio of experimental activities.  ∆∆GFR exptl≈ RTln(FR) at 298.15 K in kcal/mol.  bKi
values (nM) from Carey, K. D., et al. , Cancer Res 66, 8163-8171. (2006).  c IC50 values (nM) from Ji, H., et al., Proc 
Natl Acad Sci U S A 103, 7817-7822. (2006).  d Kd values (nM) from Yun, C. H., et al., Proc Natl Acad Sci U S A 
105, 2070-2075. (2008).  eKd values (nM) from Yun, C. H., et al., Cancer Cell11, 217-227. (2007).  

Ligands
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Using Molecular Dynamics 
generated ensembles
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Thermodynamic Cycle
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Time (ns)

Ligand simulation

Protein simulation

Protein-ligand Complex simulation 

Run 3 independent Simulations 
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Time (ns)

Ligand simulation

Protein simulation

Protein-ligand Complex simulation 

Run 1 Simulations 

remove ligand 

remove protein  
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Simulation Methods

• force field: FF99SB (protein); GAFF (ligand) augmented  with 
CHELPG charges (6-31G* basis set);TIP3P (water)

• 9 step equilibration (minimization + MD) with decreasing restraints 
(amber 8 package) 

• final production run for 5 ns @ 298.15 K
– constant T & P with periodic boundary conditions

• post processing 
– root mean-squared deviations (RMSD)

– ∆Gbind estimation via MM-GBSA method
– energy component decomposition 
– per-residue H-bond and energetic footprints
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MM-GBSA Background
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Generalized Born Equations
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• The trick to GB is calculating the Born Radii
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r r

Generalized Born as a Function of atom position
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Generalized Born as a Function of atom position

2 atoms movie
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Generalized Born as a Function of atom position

4 atoms movie
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Molecular Footprints --
Per-residue Decomposition of 

Interactions 
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Results
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Key EGFR
Mutations 

• Cancer Causing
– L858R 

increase binding to 
erlotinib & gefitinib

– Del E746-A750
increase binding to 
erlotinib & gefitinib

– G719S
decrease binding to 
gefitinib 

• Drug Resistance 
– T790M

decrease binding to all 
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Simulations vs. Crystallographic Structures

(a) erlotinib (b) gefitinib (c) AEE788

red=1M17 (erlotinib, WT)

blue=2ITY (gefitinib,WT)

green=2J6M (AEE788, WT)

blue=2ITZ (gefitinib,L858R)

green=2JIU (AEE788,T790M) 

blue=2ITO (gefitinib, G719S)

green=2ITP (AEE788, G719S)  

Overlaid MD snapshots (thin lines N=10) with available crystal structure 
complexes of EGFR (bold lines)
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Simulation and System Stability: Erlotinib 
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Relative Free Energies and Components  
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Correlation With Experimental Fold Resistance 
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Component Correlations  
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Component Correlations  
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Absolute Free Energies and Components  
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Component Correlations  
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Key Inhibitor
H-bonding  

• M793 at backbone
• interactions with T790

– erlotinib Pi-type h-bond

– gefitinib Cl-type h-bond
– AEE788 scaffold

• erlotinib at C797
• AEE788 at 805



36

Erlotinib Binding Comparison

The T790M mutation does not lead to a steric clash with erlotinib 
however there is change in H-bonding at position C797
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Footprints:
Energy 
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Water Mediated Interactions 
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• Good agreement (∆∆Gb calcd vs. exptl correlation, r2 = 0.84, N=7) 

• VDW is the most correlated term

• Coul. is important for orienting the ligand in the pocket

• FP regions with similar and dissimilar energies suggest good 
convergence/reproducibility

• Increased VDW interactions at M790 suggest this is not a steric clash 
mechanism

• Coulombic energies mirror H-bond trends (AEE788 shows largest interactions 
at M793)

• Flatter difference FP profiles for gefitinib shows agreement with exptl FR trend

• Water-mediated interaction is meaningful

• Mutants effect on affinity for ATP is not the sole reason for modulated affinity 
for the three inhibitors 

• Differences of direct and water-mediated interactions contribute to changes in 
energies

Conclusions
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Questions??


